top of page

Publications

2024

59. Xiao, R.; Luo, Z.; Wei, Z.; Minakata, D.; Spinney, R.; Waclawek, S.; Zeng, W.; Tang, C-J. Beyond the bench: Evaluating the reliability of chemical scavengers in radical-based advanced oxidation processes. Chem. Eng. J. 2024, accepted.

58. Barrios, B.; Minakata, D. Molecular insights into the quenching mechanism of the triplet excited state of rose Bengal through oxidative and reductive organic compounds. ACS Omega. 2024, DOI: 10.1021/acsomega.4c04759.

 

57. Minakata, D. Development of elementary reaction-based kinetic model to predict the aqueous-phase fate of organic compounds induced by reactive free radicals. Accounts of Chemical Research. 2024. DOI: 10.1021/acs.accounts.4c00021.

56. Pan, Y.; Breider, F.; *Barrios, B.; Minakata, D.; Deng, H.; von Gunten, U. Role of carbonyl compounds for nitrosamine formation during nitrosation: Kinetics and mechanisms. Environmental Science & Technology. 2024. DOI: 10.1021/acs.est.3c07461

55. Luo, Z.; Zhou, W.; Jiang, Y.; Minakata, D.; Richard, S.; Dionysiou, D.; Liu, J.; Xiao, R. Bimolecular versus trimolecular reaction pathways of H2O2 with the hypochlorous species and implications for wastewater reclamation. Environmental Science & Technology. 2024. DOI: 10.1021/acs.est.3c06375.

 

2023

54. Minakata, D.; von Gunten, U. Predicting Transformation Products during Aqueous Oxidation Processes: Current state and outlook. Environmental Science & Technology. 2023. 57, 18410-18419. DOI: 10.1021/acs.est.3c04086.

 

 

53. Mohrhard, B.; Barrios, B.; Kibler, R.; King, W.; Doskey, P.V.; Minakata, D. Elucidation of the photochemical fate of methionine in the presence of surrogate and standard dissolved organic matter under sunlight irradiation. Environmental Science & Technology. 2023. 57, 38, 14363-14372. DOI: 10.1021/acs.est.3c04176.

 

52. Daily, R.; Minakata, D. Development of a group contribution method to predict the aqueous-phase reactivities of hydrated electrons with organic compounds. Chemical Engineering Journal Advances. 2023. DOI: 10.1016/j.ceja.2023.100493.

 

 

 

 

 

 

51.  Barrios, Benjamin.; Minakata, D. Aqueous-phase single-electron transfer calculations for carbonate radicals using the validated Marcus theory. Environmental Science & Technology Letters. 2023. DOI: 10.1021/acs.estlett.2c00913.

2022

50.  Sungeun, L.; Benjamin, B.; Minakata, D.; von Gunten, Urs. Reactivity of bromine radical with dissolved organic matter moieties and monochloramine: Effect on bromate formation during ozonation. Environmental Science & Technology. 2022. DOI: 10.1021/acs.est.2c07694.

49.  Bai, L.; Jiang, Y.; Xia, D.; Wei, Z.; Spinney, R.; Dionysiou, D.D.; Minakata, D.; Xiao, R.; Xie, H-B.; Chai, L. Response to comment on “Mechanistic understanding of superoxide radical-mediated degradation of perfluorocarboxylic acids”. Environmental Science & Technology. 2022, 56, 8, 5289-5291. DOI: 10.1021/acs.est.2c01335.

48. *Daily, R.; Minakata, D. Reactivities of hydrated electrons with organic compounds in aqueous-phase advanced reduction processes. Environmental Science: Water Research & Technology. 2022, 8, 543-574. DOI: 10.1039/D1EW00897H

47. Bai, L.; Jiang, Y.; Xia, D.; Wei, Z.; Spinney, R.; Dionysiou, D.; Minakata, D.; Xiao, R.; Xie, H.; Chai, L. Mechanistic understanding of superoxide radical-mediated degradation of perfluorocarboxylic acids. Environmental Science & Technology. 2022, 56, 1, 624-633. DOI: 10.1021/acs.est.1c06356

46. *Geglio, T.; *Bradley, T.; *Williams, T.; Zhou, S.; Watkins, D.; Minakata, D. Water- and Energy-efficient appliances for circular water economy: Conceptual framework development and analysis of greenhouse gas emissions and water consumption. ES&T Eng. 2022. 2, 3, 409-422. DOI.org/10.1021/acsestengg.1c00243

2021

45. Minakata, D. Endless challenge in the pursuit of the true essence.  Journal of Japan Society on Water Environment. 2021, 44(10), 325-327. 

44. *Barrios, B.; Kamath, D.; Coscarelli, E.; Minakata, D. Elementary reaction-based  kinetic model for the fate of N-nitrosodimethylamine under UV oxidation. Environmental Science: Water Research & Technology. 2021, 7, 1748-1759. DOI:10.1039/D1EW00262G

43. *Barrios, B.; *Mohrhardt, B.; Doskey, P.; Minakata, D. Mechanistic insight into the reactivities of aqueous-phase singlet oxygen with organic compounds. Environmental Science & Technology. 2021, 55(12), 8054-8067. DOI: 10.1021/acs.est.1c01712.  

42. Luo, Z.; Tseng, M-Y.; Minakata, D.; Bai, L.; Hu, W-P.; Song, W.; Wei, Z.; Spinney, R.; Dionysiou, D.D.; Xiao, R. Mechanistic insight into superoxide radical mediated degradation of carbon tetrachloride. Chem. Eng. J. 2021, 410, 128181. DOI.org/10.1016/j.cej.2020.12818

2020

41. Ma, J.; Minakata, D.; O’Shea, K.; Bai, L.; Dionysiou, D.D.; Spinney, R.; Xiao, R.; Wei, Z. Determination and environmental implications of aqueous-phase rate constants in radical reactions. Water Research. 2020, 190, 116746. DOI: 10.1016/j.watres.2020.116746

40. *Kibler, R.; *Mohrhardt, B.; *Zhang, M.; Breitner, L.; Howe, K.; Minakata, D. A group contribution method to predict the mass transfer coefficients of organics through various RO membranes. Environmental Science & Technology. 2020. 54, 5167-5177. DOI: 10.1021/acs.est.0c00356

39. *Zhang, M.; Breitner, L.; Howe, K. J.; Minakata, D. Role of interaction between low molecular weight neutral organic compounds and a polyamide RO membrane for the rejection mechanism. RSC Advances. 2020, 20, 15642-15649. DOI: 10.1039/D0RA01966F 

38. Xiao, R.; Bai, L.; Liu, K.; Shi, Y.; Minakata, D.; Huang, C-H.; Spinney, R.; Seth, R.; Dionysious, D.D.; Wei, Z.; Sun, P. Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus Faecalis in municipal wastewater. Water Research. 2020, 173, 115552. DOI: 10.1016/j.watres.2020.115552

37. *Zupko, R.; *Kamath, D.; *Coscarelli, E.; Rouleau, M.; Minakata, D. Agent-based model to predict the fate of the degradation of organic compounds in the aqueous-phase UV/H2O2 advanced oxidation process. Process Safety and Environmental Protection. 2020, 136, 49-55. DOI:10.1016/j.psep.2020.01.023

2019

36. Breitner, L.; Howe, K.; Minakata, D. Effects of functional chemistry on the rejection of low-MW neutral organics through reverse osmosis membranes for potable reuse. Environmental Science & Technology. 2019, 53 (19), 11401-11409. DOI: 10.1021/acs.est.9b03856.

35. Xiao, R.; Liu, K.; Bai, L.; Minakata, D.; Seo, Y.; Goktas, R.K.; Dionysiou, D.D.; Tang, C-J.; Wei, Z.; Spinney, R. Inactivation of pathogenic microorganisms by sulfate radical: Present and future. Chemical Engineering Journal. 2019, 371, 222-232. DOI: 10.4236/wjet.2017.52B003

34. Gao, L.; Minakata, D.; Wei, Z.; Spinney, R.; Dionysiou, D.D.; Tang, C-J.; Chai, L.; Xiao, R. Mechanistic study on the role of soluble microbial products in sulfate radical-mediated degradation of pharmaceuticals. Environmental Science & Technology. 2019, 53, 342-353, DOI: 10.1021/acs.est.8b05129.

2018

33. Breitner, L.; Howe, K.; Minakata, D. Boron can be used to predict trace organic rejection through reverse osmosis membranes for potable reuse. Environmental Science & Technology. 2018, 52, 13871-13878, DOI: 10.1021/acs.est.8b03390.

 

 

 

 

 

 

 

32. *Kamath, D.; Mezyk, S.; Minakata, D. Elucidating the elementary reaction pathways and kinetics of hydroxyl radical induced acetone degradation in aqueous phase advanced oxidation processes. Environmental Science & Technology, 2018, 52(14), 7763-7774. DOI: 10.1021/acs.est.8b00582

The paper was highlighted in ‘Water Canada’ on July 3, 2018, ‘Lab Manager’ on June 29, 2018, and ‘ScienceDaily’ on June 27, 2018. 

31. *Kamath, D.; Minakata, D. Emerging Investigator Series: Ultraviolet and free chlorine aqueous-phase advanced oxidation process: Kinetic simulations and experimental validation. Environmental Science: Water Research & Technology, 2018, 4, 1231-1238. DOI: 10.1039/c8ew00196k. Published as emerging investigator series and special issue of UV based advanced oxidation processes. 

30. Minakata, D.; *Coscarelli, E. Mechanistic insight into the degradation of nitrosamines via aqueous-phase UV photolysis or a UV-based advanced oxidation process: Quantum mechanical calculations. Molecules, 2018, 23, 539. DOI: 10.3390/molecules23030539

29. *Varanasi, L.; *Coscarelli, E.; Khaksari, M.; Mazzoleni, L.R.; Minakata, D.  Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-based advanced oxidation processes. Water Research, 2018, 135, 22-30. DOI: 10.1016/j.watres.2018.02.015.

28. *Zhang, M.; Howe, K.J.; Minakata, D. Predicting the partitioning of organic compounds through polymer materials: Quantum mechanical applications. Journal of Environmental Engineering, 2018, 144(4), 04018019. DOI:10.1061/(ASCE)EE.1943-7870.0001361

2017

27. Minakata, D.; *Kamath, D.; *Maetzold S. Mechanistic insight into the reactivity of chlorine-derived radicals in the aqueous-phase UV/chlorine advanced oxidation process: Quantum mechanical calculations. Environmental Science & Technology, 2017, 51(12), 6918-6926. DOI: 10.1021/acs/est/7b00507.

2016 

26. Bruggeman, P.; Kushner, M.; Locke, B.; Gardeniers, H.; Graham, B.; Graves, D.; Hofman-Caris, R.; Maric, D.; Reid, J.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.; Garrick, S.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Krcma, F.; Kolb, J.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.; Pawlat, J.; Petrovic, Z.; Pflieger, R.; Reuter, S.; Schram, D.; Schroeter, S., Shiraiwa, M.; Tarabova, B.; Tsai, P.; Verlet, J.; von Woedtke, T.; Wilson, K.; Yasui, B., Zverva, G. Plasma-liquid interactions: A review and roadmap, Plasma Sources Science and Technology, 2016, 25, 053002. DOI: PSST-101061.R1.

This paper was selected as highlights of 2016 by Plasma Sources Science and Technology. The annual selection was made by the Associate Editors to represent the breadth and excellence of the work published in 2016.

25. Mostofa, K.M.G.; Lie, C.-Q.; Zhai, W.D.; Minella, M.; Vione, D.; Gao, K.; Minakata, D.; Arakaki, T.; Yoshioka, T.; Hayakawa, K.; Konohira, E.; Tanoue, E.; Akhand, A.; Chanda, A.; Wang, B.; Sakugawa, H. Reviews and syntheses: Ocean acidification and its potential impacts on marine ecosystems. Biogeosciences, 2016, 13, 1767-1786.

2015

24. Guo, X.; Minakata, D.; Crittenden, J.C. On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes. Environmental Science & Technology, 2015, 49(15), 9230-9236. DOI: 10.1021/acs.est.5b02034.

23. Minakata, D.; Song, W.; Mezyk, S.P.; Cooper, W.J. Experimental and theoretical studies on aqueous-phase reactivity of hydroxyl radicals with multiple carboxylated and hydroxylated benzene compounds. Physical Chemistry Chemical Physics, 2015, 17, 11796-11812.

2014

22. Minakata, D.; Mezyk, S.P.; Jones, J.W.; Daws, B.R.; Crittenden, J.C. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions. Environmental Science & Technology, 2014, 48, 13925-13932.  DOI: 10.1021/es504491z

21. Guo, X.; Minakata, D.; Crittenden, J. Computer-based first-principles kinetic Monte Carlo simulation of polyethylene glycol degradation in aqueous phase UV/H2O2 advanced Oxidation Processes. Environmental Science & Technology, 2014, 48(18), 10813-10820. DOI: 10.1021/es5029553

20. Xing, L.; Xie, Y.; Minakata, D.; Cao, H.; Xiao, J.; Zhang, Y.; Crittenden, J.C. Activated carbon enhanced ozonation of oxalate attributed to HO• oxidation in bulk solution and surface oxidation: Effect of activated carbon dosage and pH. Journal of Environmental Sciences, 2014, 26, 2095-2105. DOI: 10.1016/j.jes.2014.08.009  

19. Zhang, G.; Zhang, W.; Crittenden, J.; Minakata, D.; Chen, Y.; Wang, P. Effects of inorganic electron donors in photocatalytic hydrogen production over (CuAg)xIn2xZn2(1-2x)S2 under visible light irradiation. Journal of Renewable and Sustainable Energy. 2014, 6, 033131, DOI: 10.1063/1.4884197.

18. Guo, X.; Minakata, D.; Junfeng, N.; Crittenden, J.C. Computer-based first-principles kinetic modeling of degradation pathways and byproduct fates in aqueous phase advanced oxidation processes. Environmental Science & Technology, 2014, 48(10), 5718-5725. DOI: 10.1021/es500359g

17. Zhang, G.; Zhang, W. Minakata, D.; Wang, P.; Chen, Y.; Crittenden, J.C. Efficient photocatalytic H2 production using visible-light irradiation and (CuAg)xIn2xZn2(1-2x)S2 photocatalysts with tunable band gaps. International Journal of Energy Research, 2014, 38(12), 1513-1521, DOI: 10.1002/er.3157. 

16. Xing, L.; Xie, Y.; Cao, H.; Minakata, D.; Zhang, Y.; Crittenden, J.C. Activated carbon-enhanced ozonation of oxalate attributed to HO• oxidation in bulk solution and surface oxidation: Effects of the type and number of basic sites. Chemical Engineering Journal, 2014, 245, 71-79.

15. Cao, H.; Xing, L.; Wu, G.; Xie, S.; Zhang, S.Y.; Minakata, D.; Crittenden, J.C. Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Applied Catalysis B: Environmental, 2014, 146, 169-176. 

2013

14. Guo, X.; Minakata, D.; Crittenden, J.C. Development of simplified pseudo-steady state and pseudo-steady state models for advanced oxidation processes. 2013. Center for Sustainable Engineering Educational Module. November.

13. Zhang, G.; Zhang, W.; Crittenden, J.C.; Chen, Y.; Minakata, D.; Wang, P. Photocatalytic hydrogen production under visible light irradiation on (CuAg)0.15In0.3Zn1.4S2 synthesized by precipitation and calcination. Chinese Journal of Catalysis, 2013, 34(10), 1926-1935.

12. Zhang, G.; Zhang, W.; Minakata, D.; Chen, Y.; Wang, P.; Crittenden, J. The pH Effects on H2 Evolution Kinetics for Visible Light Water Splitting over the Ru/(CuAg)0.15In0.3Zn1.4S2 Photocatalyst. International Journal of Hydrogen Energy, 2013, 38(27). 11727-11736.

11. Sun, P.; Yao, H.; Minakata, D.; Crittenden, J.C.; Pavlostathis, P.; Huang, C-H. Acid-catalyzed transformation of ionophore veterinary antibiotics. Environmental Science & Technology, 2013, 47, 6781-6789. DOI: 10.1021/es3044517

10. Yao, H.; Sun, P.; Minakata, D.; Crittenden, J.C.; Huang, C-H. Kinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UV/H2O2. Environmental Science & Technology, 2013, 47, 4581-4589. DOI: 10.1021/es3052685

9. Zhang, G.; Zhang, W.; Wang, P.; Minakata, D.; Chen, Y.; Crittenden, J. Stability of an H2-producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation. International Journal of Hydrogen Energy, 2013, 38, 1286-1296. DOI:10.1016/J.IJHYDENE.2012.11.033

2011

8. Cooper, N.; Minakata, D.; Begovic, M.; Crittenden, J. Should we consider using liquid fluoride thorium reactors for power generation? Environmental Science & Technology. 2011, 45(15), 6237-6238. DOI: 10.1021/es2021318

7. Minakata, D.; Song, W.; Crittenden, J. Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions: Experimental and theoretical studies. Environmental Science & Technology, 2011, 45, 6057-6065. DOI: 10.1021/es200978f

6. Minakata, D.; Crittenden, J. Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants and the Free Energy of Activation. Environmental Science & Technology, 2011, 45, 3479-3486. DOI: 10.1021/es1020313

2009

5. Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. Environmental Science & Technology, 2009, 43, 6220-6227. DOI: 10.1021/es900956c

  • Professor Hartmut Herrmann (Professor of Atmospheric Chemistry and the head of the Chemistry Department of the Leibniz Institute for Tropospheric Research and a member of both the Faculties of Physics and Chemistry of the University of Leipzig in Germany) addressed the Group Contribution Method (GCM) tool in his 2010 review paper (ChemPhysChem, 2010, 11, 3796-3822), stating, “The wide application range in combination with the user-friendliness makes it probably the best currently available estimation tool for OH radical reactions in aqueous solution.  Overall, the method of Minakata et al. is currently the most broadly usable method for the prediction of OH radical reaction rates in aqueous solution.”

  • Professor Urs von Gunten (Eawag, Swiss Federal Institute of Aquatic Science and Technology) referred to the GCM for HO radical rate constant predictions as "sophisticated estimation methods for HO radical rate constants" and used the GCM to calculate 29 HO radical reaction rate constants emerging organic contaminants and obtained an accuracy of difference of factor of 2 from experimental values (Wat. Res. 2012, 46, 6177-6195).

 

4. Westerhoff, P.; Moon, H.; Minakata, D.; Crittenden, J.C. Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities. Water Research 2009, 43(16), 3992-3998. DOI: 10.1016/j.watres.2009.04.010

2008

3. Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: Effect of pretreatment options and light sources. Water Research, 2008, 42, 5045-5053. DOI: 10.1016/j.watres.2008.09.017

2007

2. Westerhoff, P.; Mezyk, S.P.; Cooper, W.J.; Minakata, D. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environmental Science & Technology, 2007, 41, 4610-4646.  

DOI: 10.1021/es062529n

2006

1. Kishimoto, N.; Minakata, D.; Somiya, I. Effect of hydrodynamic condition on radical production at Ti/Pt anode in electrochemical treatment. Environmental Technology, 2006, 26, 1161-1171.  

ToC.jpg
ToC2.jpg
ToC3.jpg
1.jpg
2.jpg
3.jpg
4.jpg
1.jpg
3.jpg
2.jpg
4.jpg
5.jpg
6.jpg
1.jpg
5.jpg
2.jpg
3.jpg
4.jpg
6.jpg
7.jpg
8.jpg
9.jpg
1.jpg
2.jpg
2.jpg
3.jpg
4.jpg
7.jpg
5.jpg
toc.jpg
Picture1.jpg
bottom of page